
A tricritical model with an experimentally accessible ordering field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1975 J. Phys. A: Math. Gen. 8 913

(http://iopscience.iop.org/0305-4470/8/6/010)

Download details:

IP Address: 171.66.16.88

The article was downloaded on 02/06/2010 at 05:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/8/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A:  Math. Gen., Vol. 8, No. 6, 1975. Printed in Great Britain. Q 1975 

A tricritical model with an experimentally accessible ordering 
field 

M R H Khajehpourt, Robert A Kromhoutt and Yung-Li Wangt 
Department of Physics, The Florida State University, Tallahassee, Florida 32306, USA 
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Abstract. The Blume-Capel model in a transverse field is studied in the mean field approxi- 
mation. We find that a tricritical point exists in the transverse field-temperature plane for 
a range of values of anisotropy to exchange interaction ratio. This is in contrast with the 
original Blume-Capel model which shows the tricritical phenomena only at a single value 
of this ratio. The most interesting feature, however, is that the ordering field, which is the 
externally applied field along the longitudinal direction, is experimentally accessible and 
can be set at one’s will. This allows an experimentalist to investigate all aspects of a system 
describable by this model. Equations of the lines of critical points including the wing 
boundaries are derived. Phase diagrams for the whole range of values of anisotropy are 
described, and the experimental situation is discussed. 

1. Introduction 

Great progress has been made in understanding critical phenomena in recent years. 
While behaviour near the critical point caught the early attention and has been studied 
extensively and thoroughly, tricritical phenomena have received the attention they 
deserve only recently, after Griffith (1970) pointed out the different features of a system 
around the tricritical point in comparison with an ordinary critical point. Tricritical 
phenomena, however, prevail in many physical systems, notably : metamagnets, ’He- 
4He mixtures, multi-component fluid mixtures, NH4Cl, and certain anisotropic ferro- 
magnets. In the space of thermodynamic fields, the tricritical point separates a first- 
order transition line from a line of critical points. A conceptually more advantageous 
picture can be obtained, as noted by Griffith (1970), by introducing the thermodynamic 
ordering ‘field’ q, conjugate to the order parameter. Then in the q-T-H space, for 
example, for a metamagnet, there are three coexistence surfaces each bounded by a 
critical line intersecting along the first-order transition line. The boundaries of the 
surfaces meet together at a point, the tricritical point. In the ordinary metamagnet 
such as FeCl, , q is the fictitious staggered field. Because of the unphysical nature of q,  
the only experimentally accessible region in this space is the original q = 0 plane. 
However, very recently (Blume er a1 1974) it was found that q is not necessarily fictitious, 
but can manifest itself in a class of antiferromagnets in which DAG is a representative. 
Because of the peculiar symmetry of these crystals, a staggered field is induced as an 
external magnetic field is applied. The persistence of such a staggered field caused the 
phase transition observed in a magnetic field to be a first-order phase transition on one 
of the ‘wings’ bifurcating from the first-order transition line ; in this instance the q = 0 
7 Supported in part by the Committee on Faculty Research Support (FSU). 
1 Supported in part by National Science Foundation under Grant No GH-40174. 
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plane becomes experimentally inaccessible and the experimentally observable space 
is a curved surface on which q = q(H,,  T). The staggered field is thus not really a freely 
adjustable field and as a result, the tricritical point is not approachable in such a crystal 
in the laboratory. 

To allow for a complete investigation of the behaviour near the tricritical point, it is 
highly desirable to obtain a tricritical system in which the ordering field q is entirely 
at one’s disposal. Indeed, such models exist and the simplest one is the Blume-Cape1 
model (Blume 1966, Cape1 1966) in a transverse field. The Blume-Capel model assumes 
a ferromagnetic Ising exchange interaction for a system of spins of magnitude one and a 
single ion anisotropy D(Sp)2 which gives rise to a zero field splitting. D is taken to be 
positive so the system is one of the singlet ground state systems. 

It has been shown that in the Blume-Capel model a first-order phase transition 
occurs in a narrow range of values of the anisotropy to exchange interaction ratio and 
the tricritical phenomena arise only at a single value of this ratio. However, in a trans- 
verse field the tricritical point develops into a line. Thus, instead of a single value there 
is a range of values of the anisotropy for which the system would display the tricritical 
phenomena. Unlike the case of a metamagnet, the ordering field q here is the externally 
applied magnetic field along the z axis ; the disordering field is clearly the transverse 
field H,. In the space of H,, H, and T, we obtain, in the plane H ,  = 0, a first-order transi- 
tion line which joins to a critical line at the tricritical point, and two coexistence surfaces 
for H ,  # 0, the ‘wings’, which bifurcate from the first-order transition line. This clearly 
is the familiar diagram for a tricritical system. The important feature of the model 
considered here is, however, that all the fields are physical and can be set at one’s will. 
This makes possible a complete investigation of the system in the laboratory. 

In this paper we study theoretically the behaviour of the Blume-Cape1 model in a 
transverse field. The mean field approximation (MFA) is used. Concentrating on tri- 
critical phenomena we obtain the critical curves bounding the coexistence surfaces 
including the ‘wings’. Phase transitions on the wings are also studied. Varying the 
fields, the transition point can be pushed towards the wing critical end point ; the size of 
the discontinuous jump in magnetization is shown to decrease towards zero. The 
different behaviours for the whole range of anisotropy constant are discussed in detail. 
The organization of the paper is as follows. 

In the next section we introduce the Hamiltonian of the Blume-Cape1 model in a 
transverse field and study the eigenenergy levels in MFA. Through a Landau expansion 
of the free energy, in Q 3, the equation of the critical line in the plane of zero ordering field 
is found, and location of the tricritical point obtained. The critical lines in finite ordering 
field (wing critical end points) are obtained by using an expansion around the critical 
end point. In 8 4  a short discussion of the typical magnetization curves and parallel 
susceptibility is given. A detailed discussion of phase diagrams for the full range of 
positive values of anisotropy is given in Q 5. Finally in Q 6 the main results are sum- 
marized and the experimental situation is reviewed. 

2. Model Hamiltonian and energy levels 

We consider an Ising model with zero field splitting (the Blume-Capel model) in a 
transverse field H ,  : 
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where both J and D are assumed positive. In the MFA the Hamiltonian ( 1 )  in units of  
J(0) can be written as 

(2.2) Ju;, = -2(S')S' +D(Sz)2 -h,S'-h,Sx +(S')' 

where 

Energy levels of the system in MFA are found by diagonalizing the Hamiltonian (2.2) : 

Ei = D-Ai+(S')2 (2.3) 

2: - DA? - (h: + a2)Ai + Da2 = 0 (2.4) 

a = h2+2(S'). (2.5) 

where Ai are the three roots of the cubic equation : 

The Ai can be found as a power series in a. For small a (eg h, = 0 and (S') + 0 near a 
continuous phase transition) an appropriate truncation in series enables us to construct 
a Landau expansion of free energy : 

(2.6) Ei = ci + aia2 + eia4 + cia6 + (S')' 

where : 

E,-, = D 

E *  = i[D+(D2+4h:)1'2] 

and 

Ei 

3 4  - 406,. + D2 - hf  

ai + ( 2 0  - 3ei)a? 
3 ~ ?  - 4Dci + D2 - h: 

a. = ' 

e. = ' 

(2.7) 

ei + 2aibi(2D - 3ci) - a: 
c .  = (2.10) 

At zero temperature, for h, = 0 and small (S'), E -  is the ground state energy of the 

(2.11) 

For D less than a certain value D,, (S') tends to zero continuously as h, is increased, 
and the system evolves into a paramagnetic state with energy E - .  This transition happens 
when 4 a -  + 1 = 0. For D = D,, the transition to the paramagnetic state occurs con- 
tinuously at h, = h,. D, and h, are found from the following equations : 

' 3 $ - 4 D ~ i + D ~ - h :  * 

system : 

E -  = E- +(4a-  + l ) ( S z ) 2 +  16&-(Sz)4+64c-(Sz)6.  

4 a -  + 1 = o  
e- = 0. 

(2.12) 

Solving equation (2.12) for D, and h,, one gets D, = 0.584 and h, = 1.20. For D > D , ,  
( S ' )  does not vanish continuously, and drops to zero from a finite value at a critical 
field. 



916 M R H Khajehpour, R A Kromhout and Y-L Wang 

When h, is finite, no phase transition is expected for D < D,. For D > D, a first- 
order phase transition may occur. The jump in moment in this instance decreases as 
h, and h, approach certain critical values depending on D and finally vanishes at h', 
and h f .  To determine the behaviour near this critical point, the energy levels should be 
expanded about a, = hz+2(SZ)' .  The expansion involves odd order terms in (U-U,), 
and the coefficients are a, dependent. If we let 

then the energy levels are : 

E i  = ei + ai& + bi8u2 + ci6u3 

where ci  are the solutions of the cubic equation : 

E: - 2 0 ~ :  + ( D 2  - h; -u,Z)&i+Dh2 = 0 

and a , ,  bi  and ci are given by : 

2U,Ei a .  = - 
' f i  

bi  = - a 3 3 q  - 2 0 )  - 2u,ai - ci 
fi 

2aibi(3&,-2D)+a? - a i - 2 a , b i  

fi 
c. = - 

(2 .13)  

(2 .14)  

(2.15a) 

(2.15b) 

( 2 . 1 5 ~ )  

( 2 . 1 5 4  

We now proceed to find the free energy and study the critical behaviour at finite 
temperatures. 

3. Critical Lines and tricritical point at finite temperature 

When h, approaches zero, we can use the energy levels given by equation (2.6) to find 
the free energy as a Taylor expansion in U. The partition function Z is written up to 
sixth order in U, 

z2 = -"F ai e 

(3 .1)  

( 3 . 2 ~ )  

(3 .2b)  

( 3 . 2 ~ )  

(3.2d) 
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and P = 1/T, the inverse of temperature which is measured in units of J(O) /k , .  From 
(3.1) the free energy is found as 

1 1 G = - - I ~ z  = - - I ~ ( Z , + Z , ~ ~ + Z , ~ ~ + Z ~ ~ ) + ( S ~ ) ~ .  

G = Go +(S')' +$Aa2 +iBa4 +&Cct6 

(3.3) P P 
Expanding the logarithm in ct and keeping terms up to sixth order : 

(3.4) 
where 

1 
Go = - - l n Z o  

P 
(3.5a) 

(3.5b) 

(332) 

(3.5d) 

To find the equilibrium values of the parameter ( S ' ) ,  the free energy should be 
minimized with respect to ( S ' )  : 

(3.6) 

Thus the equilibrium values of ( S ' )  are given by the equation : 

(S")+Act+Bcr'+Ccr5 = 0. (3 .7)  
From equation (3.7) one can find ( S ' )  as a function of h,, h, and Tfor fixed D. Substitut- 
ing for (S') in equation (3.4) one obtains the Gibbs free energy G(h,, h, , T).  The Legendre 
transformation of G(h,, h , ,  T )  with respect to the ordering field h,, is the Helmholtz 
free energy : 

(3.8) F ( ( S ' ) ,  h,, T )  = G ( H ,  T )  - (S ' )h ,  
where 

To find ct as a function of ( S ' )  we invert equation (3 .7)  

1 B C 3B2 
A A4 (A6 A ' )  

= - - (Sz )+ - (Sz )3+  _ _ _ _  ( S z ) 5 +  (3.10) 

and 

(:6 
B 

h, = ct-2(s') = - - + 2  (SZ)+ - (Sz ) '+  ( S 2 ) 5 .  (3.11) (: ) A4 

And the free energy F ( ( S ' )  ; h,, T )  can be written as 

F ( ( S ' ) ;  h, ,  T )  = F o + F 2 ( S ' ) 2  -k F4(S')4+F6(S')6 (3.12) 
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where 

F 2 =  - ( I + & )  

1 B  
4 - 4 A  F - -T 

The equations for the ;I lines (lines of critical points) can be found from 

with solutions 

( i )  F ,  = 0, h, = 0 

In terms of A,  B and C, the equations of the ,i lines are 

(i) A = -1 2' h, = 0 

(3.13u) 

(3.13b) 

(3.134 

(3.14) 

( 3 . 1 5 ~ )  

(3.1 5c)  

9 B 2 A 3  1 
% C A - 3 B 2  2 A  

+--+1 = 0, (ii) 

Equation ( 3 . 1 5 ~ )  gives the equation of the A line in the h, = 0 plane, and (3.15d) those 
of the wing critical end lines for small h,. The three 1 lines given by equation ( 3 . 1 5 ~ )  and 
equation (3.15d) meet at a tricritical point (h ,  = 0, h t ) ,  T")) determined by : 

(3.16) 

To find the critical end points on the wings, we use the energy levels as given by 
equation (2.13) to construct the free energy about a, : 

1 
(3.17) 

1 F = --1nZ = --lnQ+(Sz)2 
B B 

where 

Q = 1 exp[ - f l (c i+ ui6a + bi6a2 + ci6a3 + di6cr4 +. . .)I. 
i 

Expanding equation (3.18) in powers of 6cr : 

Q = Qo(T,cr,)+Q,Gcr-Q2Sa2+Q,6a3+Q,6cr4+. . . 
where : 

Q1 = - P x u i e - B E i  

Q 2  = -/? 1 (bi-@az) e-@', 
i 

i 

(3.18) 

(3.19) 

(3.20a) 

(3.20b) 
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Q3 = -pc (3 .20~)  
i 

(3.20d) 

where Qo, Q1, Q2, Q3 and Q4 depend only upon a, and T explicitly. Imposing the 
equilibrium conditions on the free energy equation (3.17) : 

or 

Substituting for Q from equation (3.19) 

h = h c - -  4Q ---‘-BQo 2Q2 6a-- 6Q3-- 6QlQ2+%)6a2+. . . 
‘ B ~ o (  ’ Q O  ) P L O (  QO Q’, 

where 

Now 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

At a = cl,, ie at critical end point 

(3.27) 

(3.28) 

Equations (3.27) and (3.28) together with equation (3.24) determine the coordinates of 
the wing boundaries in (h‘, T, h,) space (for fixed D). In the limit of h, -+ 0 one gets : 

1- T+(l--jT)”’ 
h; = T In T 2( 1 - jT)1/2 [4T(2T- 1)]1” 

D = i T  ln[8T/(2T- l)]. 

This special case was obtained by Blume et al(1971). 

4. Magnetization and susceptibility 

(3.29) 

(3.30) 

We only discuss briefly the magnetization (S’) and the parallel susceptibility 
x,, = a(Sz) /ah ,  as we approach the critical end line. 
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As wing coexistence surfaces are crossed magnetization ( S ' )  changes discontinu- 
ously. This jump becomes smaller and smaller as the wing critical end point is 
approached. A typical set of magnetization curves at a constant temperature (and for 
different values of transverse field) as functions of parallel field is given in figure 1. For 
T = 0.5 and D = 0.85, the critical transverse field is h: = 0.6494. For h, = 0.62 a 
drop in ( S z )  is observed as the coexistence surface is crossed at h, = 0.008. The mag- 
netization curves for h, > hz are typical of a paramagnetic regime. The two curves 
labelled A and B in figure 1 are stability (spinodal) and coexistence (binodal) curves 
respectively. Figure 2 shows the behaviour of the inverse parallel susceptibility at a 

hx 

0.60 
0. 62 
0 64 
0 . 6 6  

W 0.01 0.02 0.03 

hz 

Figure 1. Behaviour of (S ' )  (full line) as h, varies at a constant temperature for various 
values of transverse field. Here T = 0.5 and D = 0.85. The critical field is h i  = 0,6494. 
For h, < h: a first-order phase transition takes place as h, increases and hits the wing. The 
discontinuity decreases as h, increases and pushes the transition point towards the wing 
boundary; at h, = hf, the transition is continuous. For h, > h, no phase transition is 
expected. Stability (dotted) and coexistence (chain) curves are denoted by A and B 
respectively. 

0.004t 

h2 

Figure 2. Inverse susceptibility xz;' as a function of h, for various values of h,. Here D = 0.85 
and T = 0.5. For h, = 06492 which is less than the critical value, xz;' changes discontinuity 
as the field h, crosses the wing. At h, = 0,6494, the critical value, xz;' goes to zero as h,  
increases and approaches the wing critical end point. A case with h, above the critical value 
is also shown (h, = 06496); the system is always in the paramagnetic phase but x;' dips 
still as h,  goes over the wing edge. 
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constant temperature (T  = 0.5), near a wing critical end point for D = 0.85. We note 
that the inverse parallel susceptibility 1,' vanishes for h, = 0.6494 and h, = 0.01423, 
where the wing critical end point resides. 

5. Phasediagrams 

The shape of a phase diagram depends on the magnitude of the anisotropy D. For D 
less than a certain value (figure 3(a)) the phase diagrams consist of a single critical line 
for all ranges of temperature below a certain T,(h, = 0). In the notation of Chang et a1 
(1973) this line is designated as 2R, ; it is the boundary of a coexistence surface (cxs) 
in the ( h x ,  T )  plane. For slightly larger values of anisotropy D, only a part of the 
boundary of cxs at h, = 0 is a critical line. The critical line bifurcates at a tricritical 
point (TCP). Beyond the bifurcation point we have a line of first-order phase transitions 
in the h, = 0 plane (figure 3(b)). For even higher values of anisotropy no critical line 
in the h, = 0 plane will exist. Any phase transition in this plane (figure 3(c)) from 
ordered to disordered phase will take place in a discontinuous manner. 

Figure 3. Phase diagrams in the ( h z ,  T, h,) space for different D values. Note that only 
one of the wings is drawn in the figure. 

(a) For D C 0.583, a single critical line bounds the (T, h,) coexistente plane. 
(b) For 0.583 < D < 0.9242, the critical line in the (T,  h,) plane bifurcates into two 

critical lines which bound the two coexistence surfaces for h, 3 0, the two wings. The location 
of the tricritical point, where the three critical lines meet, depends on the value of D. 

(c) For D = 0.9242 the tricritical point is on the Taxis and the whole line in the (T,  h,) 
plane is a first-order transition line. 

(d) For 0.9242 < D < 1, the wing critical lines intersect the ( h z ,  T) plane at two separate 
points but the h, = 0 plane is still a coexistence plane. 

(e) For D = 1, the coexistence surface in the plane h, = 0 shrinks to a point at the origin. 
(f) For D > 1, the two coexistence surfaces are completely separated from each other. 

The range of values of anisotropy which gives a tricritical point in the phase diagram 
can be found easily. One limit is found by considering the free energy as T -+ 0. We 
obtain (cf Q 2) D, = 0.583. For D < D, the phase transition will always be of second 
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order, and will only occur in the h, = 0 plane (figure 3(a)). The other limit is when the 
bifurcation into the wings happens on the T axis, ie h, = h, = 0, at a point T = Tb 
(figure 3(c)).  Recalling the work of Capel (1966), Tb is the point where the nature of 
phase transition changes for h, = h,  = 0. The corresponding value of anisotropy Db 
is equal to 0.9242. One can also find Db from equations (3.15c, d) by putting h, = 0. 

For 0.583 < D < 0.924, the critical line in the (h, ,  T )  plane will end in a tricritical 
point (hXt ,  7;) and there it bifurcates into the wing critical lines (figure 3(b)). The location 
of the TCP is a function of anisotropy D. In this interval the phase diagram looks similar 
to those of metamagnets, 3He-4He mixture and other systems having a TCP. It consists 
of three two-dimensional cxs, 2X2 (Chang et al 1973) meeting in a line of triple points, 
3 X , ,  with one of the cxs in the h, = 0 plane. Each of the three cxs is bounded by a 
one-dimensional CRS of order 2, 'RI.  The three CRS meet at the tricritical point, 
which is also the end point of the line of triple points. At any point on the line of triple 
points three phases, two ferromagnetic and one paramagnetic, coexist. At TCP the 
three phases are indistinguishable. A cross section of the wings in the (h, ,  h,) plane at 
T = 0.5 is shown in figure 4 for D = 0.85. We note that the angle between the wings 
decreases to zero as TCP is approached. 

Figure 4. A typical phase diagram in the ( h x ,  h,) plane for D = 0.85. The full line is a wing 
cross section at T = 0.5. The dashed curve is the projection of the critical end points on 
( h z ,  h,) plane. 

Figure 3(c) shows the situation at D = 0.9242 ; the critical line characterized by 
equation (3.15~) shrinks to a point on the Taxis (at Tb) where the two wing critical lines 
meet. The phase transition line in the h, = 0 plane is totally of first order. At this 
limiting point Tb only two critical lines meet. Although the reflection operation h, -+ - h, 
will result in two more critical lines below the h, = 0 plane, each of these lines can be 
considered as the continuation of the corresponding line above the plane. Thus still 
three phases become indistinguishable at  Tb. 

For 0.9242 < D < 1 while the cxs in the h, = 0 plane still persists, the critical lines no 
longer meet. Figure 3(d) shows a typical phase diagram in this range of anisotropy D. 
The wing critical lines intersect the (h,, T )  plane at two points which are determined by 
equations (3.29) and (3.30). 

At D = 1 the cxs in the h, = 0 plane shrinks to a point at  the origin where the two 
wing cxs touch. This is shown in figure 3(e).  Finally for values of anisotropy D > 1 
the two cxs are completely separated from each other as shown in figure 3 ( f ) .  The 
intersection points of wing critical lines with the ( h z ,  T )  plane are again given by equa- 
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tions (3.29) and (3.30). As D -, a3 the coordinate T of these points tends to a limiting 
value 0.5, and h, approaches infinity. Finally it is clear that if we include the anisotropy 
as a coordinate in the thermodynamic field space we generate a line of tricritical points 
terminating at Tb. 

6. Conclusion 

A study of the Blume-Cape1 model in a transverse field in the mean field approximation 
(MFA) was performed in this paper. Although MFA is a poor approximation for the study 
of critical behaviour we expect that the qualitative featiires of the phase diagram are 
nevertheless correct. In contrast to the models studied before, while the model does show 
a TCP, the thermodynamic ordering field is a field available in the laboratory unlike the 
situation in metamagnets or 3He-4He mixtures. In addition, the disordering field is 
controllable by the experimenter (unlike the Blume-Cape1 model where D is the dis- 
ordering field). Consequently, the whole thermodynamic field space including the wing 
critical end points and TCP is experimentally available. We think that this feature alone 
justifies a search for physical systems describable by the model. 

Physical systems which can be described by the Blume-Capel model might be 
found in compounds of Ni2+ or V 3 +  (both of S = 1). Indeed, a-NiS0,.6H20 (Stout 
and Hadley 1964) and Ni(N0,),.6H20 (Herweijer and Friedberg 1971) both with a 
small orthorhombic distortion, have been found to have the non-magnetic state as the 
ground state (D > 0). The exchange interactions are however weak and antiferro- 
magnetic. Furthermore there are complications that each unit cell contains more than 
oneNi+ + and that their local zaxes are not parallel to each other. Recently NiSiF,.6H20 
and NiSnC1,.6H20 (Meier et a1 1974) have been studied. These compounds have only 
one [Ni(H,O,)]++ complex per unit cell and the departure of the crystal field from 
octahedral symmetry is purely axial. D is negative for the first compound but can be 
made positive by applying a hydrostatic pressure. The crystals have rather weak 
exchange interactions and appear to be antiferromagnetic again. Although none of 
the above compounds shows the desirable property that fits this model, there is some 
indication that a suitable compound in the latter family may be found. Perhaps the 
best candidates that we know of are at present nickel lanthanum double nitrate and the 
dilute compounds with some of the nickel ions replaced by magnesium ions studied by 
Mess et al (1969). They become ferromagnetically ordered at very low temperatures. 
The pure compound has T, = 0.393 K. D is positive and is of the same order as the 
exchange coupling parameter. However, there are two different kinds of N i + +  ions 
in the crystal. This complicates the problem somewhat. But the fact that ions of the 
second kind are rather isolated from their nearest-neighbour magnetic ions may enable 
one to consider only one kind of ion in a first approximation. It would be of great 
interest to examine these compounds in the presence of a transverse field. 

We should note also that it is not essential for the exchange interaction to be Ising 
like. As an immediate generalization of the idea presented in this paper, a more general 
uniaxial ferromagnetic model considered by Wang and Khajehpour (1972) can be 
analysed in a transverse field in a similar manner. All features described in this paper 
will be retained, plus many other new features due to the possibility of the existence of 
additional phases. The more general nature of this model enhances the probability 
of finding a compound to fit the model exactly. A detailed analysis of this more general 
model will be given in a later publication. 
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